136 research outputs found

    A Simple Approach to Constructing Quasi-Sudoku-based Sliced Space-Filling Designs

    Full text link
    Sliced Sudoku-based space-filling designs and, more generally, quasi-sliced orthogonal array-based space-filling designs are useful experimental designs in several contexts, including computer experiments with categorical in addition to quantitative inputs and cross-validation. Here, we provide a straightforward construction of doubly orthogonal quasi-Sudoku Latin squares which can be used to generate sliced space-filling designs which achieve uniformity in one and two-dimensional projections for both the full design and each slice. A construction of quasi-sliced orthogonal arrays based on these constructed doubly orthogonal quasi-Sudoku Latin squares is also provided and can, in turn, be used to generate sliced space-filling designs which achieve uniformity in one and two-dimensional projections for the full design and and uniformity in two-dimensional projections for each slice. These constructions are very practical to implement and yield a spectrum of design sizes and numbers of factors not currently broadly available.Comment: 15 pages, 9 figure

    Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations

    Full text link
    The effects of different parametrizations on the convergence of Bayesian computational algorithms for hierarchical models are well explored. Techniques such as centering, noncentering and partial noncentering can be used to accelerate convergence in MCMC and EM algorithms but are still not well studied for variational Bayes (VB) methods. As a fast deterministic approach to posterior approximation, VB is attracting increasing interest due to its suitability for large high-dimensional data. Use of different parametrizations for VB has not only computational but also statistical implications, as different parametrizations are associated with different factorized posterior approximations. We examine the use of partially noncentered parametrizations in VB for generalized linear mixed models (GLMMs). Our paper makes four contributions. First, we show how to implement an algorithm called nonconjugate variational message passing for GLMMs. Second, we show that the partially noncentered parametrization can adapt to the quantity of information in the data and determine a parametrization close to optimal. Third, we show that partial noncentering can accelerate convergence and produce more accurate posterior approximations than centering or noncentering. Finally, we demonstrate how the variational lower bound, produced as part of the computation, can be useful for model selection.Comment: Published in at http://dx.doi.org/10.1214/13-STS418 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Variational Bayes with Intractable Likelihood

    Full text link
    Variational Bayes (VB) is rapidly becoming a popular tool for Bayesian inference in statistical modeling. However, the existing VB algorithms are restricted to cases where the likelihood is tractable, which precludes the use of VB in many interesting situations such as in state space models and in approximate Bayesian computation (ABC), where application of VB methods was previously impossible. This paper extends the scope of application of VB to cases where the likelihood is intractable, but can be estimated unbiasedly. The proposed VB method therefore makes it possible to carry out Bayesian inference in many statistical applications, including state space models and ABC. The method is generic in the sense that it can be applied to almost all statistical models without requiring too much model-based derivation, which is a drawback of many existing VB algorithms. We also show how the proposed method can be used to obtain highly accurate VB approximations of marginal posterior distributions.Comment: 40 pages, 6 figure
    corecore